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Carbon in the PEMFC environment

Graphite thermodynamic stability

Adapted from M. Pourbaix, Atlas of 
Electrochemical Equilibria (1966)

Regional reversals raise 
potentials dramatically

Figure from H. Tang et al, J. Power Sources (2006)

Stable region
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C.A. Reiser et al, Echem & SS Lett. (2005)



Approach

• Time Effect of Electrode Structure Change
• Quantify carbon corrosion and correlate with durability and performance

 US DOE Fuel Cell Tech Team drive cycle:
 After conditioning
 100 hours, 200 hours, ….

 Carbon corrosion AST (Accelerated Stress Test) 
 20% Pt/HSAC (E - High Surface Area Carbon) – 1.2V hold vs time
 20% Pt/Vulcan (V)
 20% Pt/LSAC (EA - Low Surface Area Carbon)

 Characterization Methods to Correlate Electrode Structure to Durability
 VIR, Impedance, CO2 Production, SEM, TEM and HAADF-STEM analysis

 Modeling
 Integrated degradation model – kinetic/rate based (ANL)
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Drive Cycle Testing 
(from U.S. Drive/DOE Fuel Cell Tech Team)

• Use 100% H2 instead of 80% H2
• One fuel cell test station capable of transient RH control 
• LANL performing Wet/Dry Drive Cycles
• LANL performing Wet Drive Cycles
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Performance During Drive Cycle 
Testing
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• Decreasing performance in both 
Kinetic and MT regions

• Small increase in the High Frequency 
Resistance

• Loss of ECSA
• Slow increasing gas cross-over, 

followed by larger
• Increasing Mass Transport resistance



~30% compression/thinning of cathode 
layer due to localized effects

HAADF-STEM images

Fresh cathode Tested cathode (300 hrs)
5 m

MPL

Fresh 
cathode

200 nm

Tested Cathode

Microscopic Characterization of Degradation After 
DOE/FC Tech Team Drive Cycle
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Elemental Analysis by XPS

• Graphitic content increases (as %)
• Likely  decrease of amorphous carbon

• Oxygen content increases
• Likely  increasing oxygen content on 

carbon surface
• Changing hydrophobicity effects transport

Ion Power MEAs with different carbon support



50 nm

TEM images

Microscopic Characterization of Carbon Corrosion
(After DOE Drive Cycle Test – 300 hrs)

50 nm
• “localized bands” of HSAC corrosion (green arrows), which are correlated increased 

Pt particle sizes and closer Pt-Pt interparticle spacings.  Typically, these oxidized 
regions of carbon surround non-oxidized regions (inside yellow outline).

• Regions of non-oxidized HSAC retain graphitic structure and are correlated with 
smaller Pt particle sizes

Fresh cathode Gore 
A510.1/M710.18/C510.2

cathode



“localized bands” of HSAC corrosion observed, which are correlated with regions of 
increased Pt particle sizes and closer Pt-Pt interparticle spacings (yellow arrows)

Fresh cathode JD091212 cathode

200 nm

Fresh vs. Aged (1224 hr wet drive cycle)



Fresh
9 microns 

Conditioned
9 microns 

100 hrs
6 microns 

Fast Catalyst Layer Thickness Change during Drive Cycle 
Operation - MEAs: Ion Power (Vulcan Carbon)

• Significant change in catalyst layer thickness over short period of time
• Without high potential operation (no shut-down/start-up)
• Carbon corrosion?  Loss of 33% of carbon in 100 hours doesn’t correlate 

with other measurements
•  Catalyst layer compaction

200 hrs
5 microns 

SEM Comparison over testing time



Mass Transport Analysis by Impedance
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R2: Resistance due to: ORR kinetics + proton conduction in 

cathode catalyst layer (CCL) + O2 diffusion across ionomer to 
TPB*

R3: Resistance due to O2 diffusion in CCL   pores (and GDL + flow 
field)

R4: Resistance due to O2 diffusion across
GDL (and flow field)

• Significant increase in mass transport losses
• Observe Catalyst layer thinning 
• Large increase in MT losses from 10 hrs to 20 hrs



Effect of Cathode Carbon Corrosion on MEA Performance
During AST (1.2 V hold)
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Cathode Carbon Corrosion Leads to Loss of Porosity

After 20h at 1.2V
~50% porosity loss in 

cathode layer

Factors contributing to cathode thinning
• loss or change in porosity
• carbon oxidation – CO2 evolution
• carbon oxidation – graphite oxide formation
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Binary images 
represent pore 

distributions after AST
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Carbon Corrosion Converts Carbon to Graphite Oxide
Factors contributing to cathode thinning

• loss or change in porosity
• carbon oxidation – CO2 evolution
• carbon oxidation – graphite oxide formation

… but loss of porosity loss does not directly correlate with 
either CO2 evolution or amount of oxidized carbon formed in 

cathode layer!
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Comparison of Carbon Corrosion – Potential Mitigation of 
Transport Losses 

Mixing Carbon Support Materials to Keep CL Structure and Activity

Note: MEA Pt loadings were: 0.15 mg/cm2 (E) / 0.15 mg/cm2 (Ea+E) / 0.25 mg/cm2 (Ea)

• High Surface Area Carbon shows 10x decrease 
in CL thickness ~ 1 m after test

• Mixed with graphitized carbon shows ~ 50% 
decrease in CL thickness

• Keeps porosity available for transport
• Pt particle size growth observed for both types 

of carbon

TEC10EA40E
inner layer

TEC10E40E
surface layer

2 m

MPL

membrane

Fresh MEA (Ea) Tested MEA (E) Tested MEA (Ea+E)

Carbon Corrosion AST – 1.2 V potential hold

10 m 1 m 
5 m 

TEM SEMSEM



Mixed Catalysts (E + Ea) – Fresh vs. Carbon AST

2 m

~ 50% 
compression/thinning due 

to E-carbon corrosion

Fresh MEA Aged MEA
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Comparison of Carbon Corrosion – Potential Mitigation of 
Transport Losses Mixing Stable Materials to Keep CL Structure
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Modeling of Carbon Corrosion Kinetics
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• E-Type carbon corrodes ~4X faster than V-Type carbon 
• E-Type carbon corrodes ~7X faster than EA-Type carbon 

• Corrosion Rate E > V > EA  (Potentiostatic: 1.2 V, 80oC and 100% RH).

 Corrosion rate of E-Type carbon slows down with ageing
 Corrosion rates of V-Type and EA-Type carbons show smaller 

effects of ageing
• Hysteresis in corrosion rates under cyclic potentials – created by 

oxidation reduction cycles (adsorbed oxygen species)



Breakdown of Overpotentials
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Carbon loss <10%
 Performance degradation with ageing is primarily due to the increase 

in activation for current densities <1 A/cm2

 At higher current densities, increased activation and mass transfer 
overpotentials contribute equally to performance degradation

Carbon loss >20%
 Performance degradation dominated by increase in mass transfer 

overpotentials even at lower current densities
 Radical changes in electrode structure



Summary
• Electrode Layer Degradation

– Kinetic and Mass Transport effects
• Carbon loss <10%

– Performance degradation with ageing is primarily due to the increase in 
activation for current densities <1 A/cm2

• Carbon loss >20%
– Performance degradation dominated by increase in mass transfer 

overpotentials even at lower current densities

• Microstructural changes
– “localized bands” of Carbon corrosion observed (primarily for HSAC)

• Preferential oxidation of E-carbon forming bands of dense "graphite-oxide" 
encapsulating large Pt nanoparticles

– EA-carbon shows ~ no oxidation, retaining its graphitic structure
– Pt particle size changes are significant for E-carbon and little for EA-

carbon.
– Ea mixed with E maintains pore structure of CL – maintains 

transport
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Future Work
• Define effect of carbon corrosion on CL structure and transport losses

• Further quantitate relationship between carbon corrosion and resulting changes in 
CCL structure (Pt/pore distributions, Pt utilization, ECSA) 

• Quantification of E vs. Ea carbon structures and mixed formulations
• Quantitate and compare the loss of pore volume after testing a sequence of times drive 

cycle tests of 0, 50, 100, 200, 400, 1000 hours
• Complete testing comparison of single type carbons and mixed carbon (HSAC and 

graphitized) comparing the structure effect on mass transport losses
• Correlate microstructural/compositional observations with AST protocols and fuel cell 

testing

• Understand MEA structure and durability effects
– Carbon/Nafion/Catalyst 
– Understand structure of catalyst layer effect on durability; different methods of forming 

catalyst layers
– Evaluate the effect of catalyst layer cracks on membrane durability during wet/dry drive 

cycle tests, and define crack width/depth required to induce enhanced degradation
– Improve durability/performance of low loaded MEAs (0.05 mg/cm2) 
– Identify ionomer degradation source for FER (CL vs membrane)



Pt Particle Growth due to Carbon Corrosion 

Pt particle growth includes Pt coalescence due to carbon loss
 Rate constant for coalescence derived from BOT and EOT PSD
 Measured ECSA loss >> decrease in GSA because of growth of Pt 

particles
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Performance Loss due to Carbon Corrosion
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Four cells with E-Type carbon support subjected to B2 AST for 5-40 h
 ECSA loss exceeded 40% after 10 h at 1.2 V: 12% carbon loss, 36 mV 

drop in cell voltage at 1 A/cm2

 Decrease in mass activity correlates with reduction in ECSA
Effect of carbon corrosion on ORR kinetic parameters
 Tafel slope was nearly constant (74.5 mV/dec) for <10% carbon loss: 

= 0.47 for n = 2
 Increase in Tafel slope for higher carbon loss may indicate change in 

ORR rate limiting step


